Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption.
نویسندگان
چکیده
Two different heterofunctional octyl-amino supports have been prepared using ethylenediamine and hexylendiamine (OCEDA and OCHDA) and utilized to immobilize five lipases (lipases A (CALA) and B (CALB) from Candida antarctica, lipases from Thermomyces lanuginosus (TLL), from Rhizomucor miehei (RML) and from Candida rugosa (CRL) and the phospholipase Lecitase Ultra (LU). Using pH 5 and 50 mM sodium acetate, the immobilizations proceeded via interfacial activation on the octyl layer, after some ionic bridges were established. These supports did not release enzyme when incubated at Triton X-100 concentrations that released all enzyme molecules from the octyl support. The octyl support produced significant enzyme hyperactivation, except for CALB. However, the activities of the immobilized enzymes were usually slightly higher using the new supports than the octyl ones. Thermal and solvent stabilities of LU and TLL were significantly improved compared to the OC counterparts, while in the other enzymes the stability decreased in most cases (depending on the pH value). As a general rule, OCEDA had lower negative effects on the stability of the immobilized enzymes than OCHDA and while in solvent inactivation the enzyme molecules remained attached to the support using the new supports and were released using monofunctional octyl supports, in thermal inactivations this only occurred in certain cases.
منابع مشابه
Desorption of Lipases Immobilized on Octyl-Agarose Beads and Coated with Ionic Polymers after Thermal Inactivation. Stronger Adsorption of Polymers/Unfolded Protein Composites.
Lipases from Candida antarctica (isoform B) and Rhizomucor miehei (CALB and RML) have been immobilized on octyl-agarose (OC) and further coated with polyethylenimine (PEI) and dextran sulfate (DS). The enzymes just immobilized on OC supports could be easily released from the support using 2% SDS at pH 7, both intact or after thermal inactivation (in fact, after inactivation most enzyme molecule...
متن کاملImmobilization of Lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on Different Hydrophobic Supports: Modulation of Functional Properties.
Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from Penicillium sp. section Gracilenta (CBMAI 1583) was successfully immobilized on supports bearing butyl, pheny...
متن کاملEvaluation of styrene-divinylbenzene beads as a support to immobilize lipases.
A commercial and very hydrophobic styrene-divinylbenzene matrix, MCI GEL® CHP20P, has been compared to octyl-Sepharose® beads as support to immobilize three different enzymes: lipases from Thermomyces lanuginosus (TLL) and from Rhizomucor miehie (RML) and Lecitase® Ultra, a commercial artificial phospholipase. The immobilization mechanism on both supports was similar: interfacial activation of ...
متن کاملTextural and Structural Characterizations of Mesoporous Chitosan Beads for Immobilization of Alpha-Amylase: Diffusivity and Sustainability of Biocatalyst
In the present study, textural and structural characterizations of chitosan bead for immobilization of alpha amylase were studied in detail by N2 adsorption–desorption, Microspore Analysis (MP), Barrett–Joyner–Halenda (BJH) plots and Field Emission Scanning Electron Microscope (FESEM) observations. Pore structure observation revealed chemical activation of chitosan bead by glutaralde...
متن کاملStabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI).
Lipase B from Candida antarctica (CALB) was immobilized on octyl agarose (OC) and physically modified with polyethyleneimine (PEI) in order to confer a strong ion exchange character to the enzyme and thus enable the immobilization of other enzymes on its surface. The enzyme activity was fully maintained during the coating and the thermal stability was marginally improved. The enzyme release fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2016